Overexpression of BdRHP1 improves drought tolerance and reduces yield loss in rice

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Overexpression of OsNAC14 Improves Drought Tolerance in Rice

Plants have evolved to have sophisticated adaptation mechanisms to cope with drought stress by reprograming transcriptional networks through drought responsive transcription factors. NAM, ATAF1-2, and CUC2 (NAC) transcription factors are known to be associated with various developmental processes and stress tolerance. In this study, we functionally characterized the rice drought responsive tran...

متن کامل

RNAi-mediated disruption of squalene synthase improves drought tolerance and yield in rice

About one-third of the world's rice area is in rain-fed lowlands and most are prone to water shortage. The identification of genes imparting tolerance to drought in the model cereal plant, rice, is an attractive strategy to engineer improved drought tolerance not only rice but other cereals as well. It is demonstrated that RNAi-mediated disruption of a rice farnesyltransferase/squalene synthase...

متن کامل

Overexpression of the transcription factor AP37 in rice improves grain yield under drought conditions.

Transcription factors with an APETELA2 (AP2) domain have been implicated in various cellular processes involved in plant development and stress responses. Of the 139 AP2 genes predicted in rice (Oryza sativa), we identified 42 genes in our current study that are induced by one or more stress conditions, including drought, high salinity, low temperature, and abscisic acid. Phylogenic analysis of...

متن کامل

Root-specific expression of OsNAC10 improves drought tolerance and grain yield in rice under field drought conditions.

Drought poses a serious threat to the sustainability of rice (Oryza sativa) yields in rain-fed agriculture. Here, we report the results of a functional genomics approach that identified a rice NAC (an acronym for NAM [No Apical Meristem], ATAF1-2, and CUC2 [Cup-Shaped Cotyledon]) domain gene, OsNAC10, which improved performance of transgenic rice plants under field drought conditions. Of the 14...

متن کامل

A novel gene OsAHL1 improves both drought avoidance and drought tolerance in rice

A novel gene, OsAHL1, containing an AT-hook motif and a PPC domain was identified through genome-wide profiling and analysis of mRNAs by comparing the microarray of drought-challenged versus normally watered rice. The results indicated OsAHL1 has both drought avoidance and drought tolerance that could greatly improve drought resistance of the rice plant. Overexpression of OsAHL1 enhanced multip...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Biologia plantarum

سال: 2019

ISSN: 0006-3134,1573-8264

DOI: 10.32615/bp.2019.043